e LR a1
R *ﬁ_ﬁzr 1T

Functional Prcgrammlng

BRI L, 5K 19
TERKF ITENLFbr
2022F09~12H

Adapted from Graham’s Lecture slides

BAE: REHIE X

Function Definition

FTEMRS: FJAESBERINENFTREN.
=ERIAIN. RINLHE. Lambda®RiAT. Section

Fl F E B R EUE SRR EX

)il | FlEf— T ENE N EHE
even :: Int —> Bool
even n = mod n 2 ==
[a)R2 | SK— 1 F R &R R X
recip :: Double —> Double
recip Xx =1/ X
@2 | F—1TRFRIFENEnTD

splitAt :: Int -> [a] — ([al], [al])
splitAt n xs = (take n xs, drop n xs)

Conditional Expressions

As In most programming languages,
functions can be defined using conditional expressions.

abs takes an integer n and returns n if it Is non-negative
and -n otherwise.

Conditional Expressions

Conditional expressions can be nested

signum ::

signum n =

X In Haskell, conditional expressions must always have an else branch,
which avoids any possible ambiguity problems with nested conditionals.

Guarded Equations

As an alternative to conditionals,
functions can also be defined using guarded equations.

abs :: —>

abs n | n >= 0 = n
| otherwise = —-n

Guarded Equations

* Guarded equations can be used to make definitions involving
multiple conditions easier to read .

signum :: —>
sighum n | n < @

N ==
| otherwilse

X The catch all condition otherwise is defined in Prelude by otherwise = True

Pattern Matching

Many functions have a particularly clear definition
using pattern matching on their arguments.

not ::
not False
not I[rue

not maps False to True, and True to False

%* Functions can often be defined in many different ways using
pattern matching. For example:

(&&) ::
True && True

True && False

False && True
False && False

can be defined more compactly by

(&&)

True && True
&&

¢* However, the following definition is more efficient, because it avoids
evaluating the second argument if the first argument is False

(&&) ::
True && b

False &

X The underscore _is a wildcard pattern that matches any argument value.

* Patterns are matched in order.
os* For example, the following definition always returns False:

(&&)

&&

True & True

of* Patterns may not repeat variables.
%* For example, the following definition gives an error:

List Patterns

Internally, every non-empty list is constructed by repeated
use of an operator (:) called “cons” that adds an element
to the start of a list.

[1I 2' 3’ 4]

1:(2:(3:(4:11)))

List Patterns

Functions on lists can be defined using x:xs patterns

> head map any non-empty list to its
first element.

> tall map any non-empty list to its
tail list.

List Patterns

f* x:xs patterns only match non-empty lists.

® 00
ghci>
ghci> head [1,2,3]

1

ghci>

ghci> head []

k% Exceptlon Prelude.head: empty llst

program — ghc-9.4.2 -B/Users/nrutas/.ghcup/ghc/9.4.2/l....

% X:XS patterns must be parenthe5|sed because application
has priority over (:).

%* For example, the following definition gives an error:

Tuple Patterns

Lambda Expressions

Functions can be constructed
without naming the functions by using lambda expressions.

\X => X + X

® the nameless function that takes a value x
and returns the result x + x

Why Lambda Expressions

*Lambda expressions can be used to give a formal meaning
to functions defined using currying.

add x y = x + vy

add = \x —> (\y —=> x + y)

Why Lambda Expressions

* Lambda expressions can be used to avoid naming functions
that are only referenced once.

—— defined 1n Prelude

map :: (a —> b) —> [a] —> [b]
map _ [] = []

map f (x:xs) = f x : map f xs

Operator Sections

An operator written between its two arguments
can be converted into a curried function written before its
two arguments by using parentheses.

® © @ nrutas —ghc-9.4.2 -B/Users/nrut...

1 + 2

(+) 1 2

ctype (+)
:+ Num a => a —=> a —> a

Operator Sections

®*This convention also allows one of the arguments of the
operator to be included Iin the parentheses.

~ nrutas — ghc-9.4.2 -B/Users/...

® O @® nrutas —ghc-9.4.2 -B/Users/nruta...
(+1) 2

| ghci>
itype (+1) ghci> :type (1-)

e Num a => a —> a

(1-) :: Num a => a —> a
ghci>

:type (1+) ghci> : type (-1)

:: Num a => a => a (_1) *+ Num a => 3

. ghc1i> (-1) 2

(1+) 2

:type (1-) - .
2 Num a => a -> a <interactive>»:25:1:

Operator Sections

In general, If is an operator @ then functions of the form
(D), (x @) and (&P y) are called sections.

Why Operator Sections

of» Useful functions can sometimes be constructed in
a simple way using sections.

(+ 1) successor function
(1 /) reciprocation function
(x 2) doubling function

(/ 2) halving function

¢l

4-1 Consider a function safetail that behaves in the same
way as tail, except that safetail maps the empty list to the
empty list, whereas tail gives an error in this case.

Define safetail using:

(a) a conditional expression;
(b) guarded equations;
(c) pattern matching.

X Hint: the library function null :: [a] —> Bool can be
used to test if a list is empty.

¢l

4-2? The Luhn algorithm is used to check bank card numbers for simple errors such as
mistyping a digit, and proceeds as follows:
(1) consider each digit as a separate number;

(2) moving left, double every other number from the second last; (MARZAE, {BE1L
Y £ Fe2)

(3) subtract 9 from each number that is now greater than 9; add all the resulting
numbers together;

(4) if the total is divisible by 10, the card number is valid.

Define a function luhn :: Int -> Int -> Int -> Int -> Bool that decides if a four-digit bank
card number is valid. For example:

>luhn 1 7 8 4
True

>luhn 4 7 8 3
False”

BAE: REHIE X

Function Definition

L2 X 2 E

