
计算概论A—实验班 

函数式程序设计 
Functional Programming 

胡振江，张 伟 

北京⼤学 计算机学院 
2022年09～12⽉



第4章：函数的定义 
Function Definition

Adapted from Graham’s Lecture slides

主要知识点：利⽤已有函数定义新函数、
条件表达式、模式匹配、Lambda表达式、Section



利⽤已有函数定义新函数
问题1  判断⼀个整数是不是偶数

 even :: Int -> Bool
 even n = mod n 2 == 0

问题2  求⼀个浮点数的倒数 
 recip :: Double -> Double
 recip x = 1 / x

问题2  将⼀个序列在位置n分开
 splitAt :: Int -> [a] -> ([a],[a])
 splitAt n xs = (take n xs, drop n xs)



Conditional Expressions 
As in most programming languages,

functions can be defined using conditional expressions.

 abs :: Int -> Int 
 abs n = if n >= 0 then n else -n

abs takes an integer n and returns n if it is non-negative 
and -n otherwise.



Conditional Expressions 
Conditional expressions can be nested

 signum :: Int -> Int 
 signum n = if n < 0 then -1 else 
            if n == 0 then 0 else 1

✴ In Haskell, conditional expressions must always have an else branch, 
which avoids any possible ambiguity problems with nested conditionals.



Guarded Equations 
As an alternative to conditionals, 

functions can also be defined using guarded equations. 

 abs :: Int -> Int 
 abs n | n >= 0 = n 
       | otherwise = -n



Guarded Equations 
✤Guarded equations can be used to make definitions involving 

multiple conditions easier to read .

 signum :: Int -> Int 
 signum n | n < 0     = -1 
          | n == 0    =  0 
          | otherwise = -1

✴ The catch all condition otherwise is defined in Prelude by otherwise = True



Pattern Matching 
Many functions have a particularly clear definition

using pattern matching on their arguments.

 not :: Bool -> Bool 
 not False = True 
 not True  = False

not maps False to True, and True to False



✤Functions can often be defined in many different ways using 
pattern matching.  For example:

 (&&) :: Bool -> Bool -> Bool 
 True  && True  = True 
 True  && False = False 
 False && True  = False  
 False && False = False

can be defined more compactly by 

 (&&) :: Bool -> Bool -> Bool 
 True && True = True 
 _    && _    = False



✤However, the following definition is more efficient, because it avoids 
evaluating the second argument if the first argument is False

 (&&) :: Bool -> Bool -> Bool 
 True  && b = b 
 False && _ = False

✴ The underscore _ is a wildcard pattern that matches any argument value. 



✤ Patterns are matched in order.
✤ For example, the following definition always returns False:

 (&&) :: Bool -> Bool -> Bool 
 _    && _    = False 
 True && True = True

✤ Patterns may not repeat variables.
✤ For example, the following definition gives an error:

 (&&) :: Bool -> Bool -> Bool 
 b && b = b 
 _ && _ = False



List Patterns
Internally, every non-empty list is constructed by repeated 
use of an operator (:) called “cons” that adds an element 
to the start of a list.

[1, 2, 3, 4]

1:(2:(3:(4:[])))
=



List Patterns
Functions on lists can be defined using x:xs patterns

 head :: [a] -> a 
 head (x:_) = x

 tail :: [a] -> [a] 
 tail (_:xs) = xs

‣ head map any non-empty list to its 
first element.

‣ tail map any non-empty list to its 
tail list.



List Patterns
✤ x:xs patterns only match non-empty lists.

✤ x:xs patterns must be parenthesised, because application 
has priority over (:).

✤ For example, the following definition gives an error:

head x:_ = x



Tuple Patterns

 -- Extract the first component of a pair. 
 fst :: (a,b) -> a 
 fst    (x,_) =  x 

 -- Extract the second component of a pair. 
 snd :: (a,b) -> b 
 snd    (_,y) =  y



Lambda Expressions 
Functions can be constructed 

without naming the functions by using lambda expressions.

\x -> x + x

• the nameless function that takes a value x 
and returns the result x + x



Why Lambda Expressions 
✤Lambda expressions can be used to give a formal meaning 

to functions defined using currying.

add x y = x + y

add = \x -> (\y -> x + y)
=



Why Lambda Expressions 
✤Lambda expressions can be used to avoid naming functions 

that are only referenced once.

 odds n = map f [0..n-1] 
    where 
      f x = x * 2 + 1

can be simplified to 

 odds n = map (\x -> x * 2 + 1) [0..n-1]



Operator Sections
An operator written between its two arguments

can be converted into a curried function written before its 
two arguments by using parentheses.



Operator Sections
✤This convention also allows one of the arguments of the 

operator to be included in the parentheses.



Operator Sections
In general, if  is an operator ⨁ then functions of the form 

(⨁), (x ⨁) and (⨁ y) are called sections.

 (⨁)   = \x -> (\y -> x ⨁ y) 

 (x ⨁) = \y -> x ⨁ y 

 (⨁ y) = \x -> x ⨁ y



Why Operator Sections
✤Useful functions can sometimes be constructed in 

a simple way using sections.  

(+ 1)  successor function

(1 /)  reciprocation function 

(* 2)  doubling function

(/ 2)  halving function 



作业



4-1

作业
Consider a function safetail that behaves in the same 
way as tail, except that safetail maps the empty list to the 
empty list, whereas tail gives an error in this case.  
Define safetail using:

(a)  a conditional expression;
(b)  guarded equations;
(c)  pattern matching.

✴Hint: the library function null :: [a] -> Bool can be 
used to test if a list is empty.



作业
4-2 The Luhn algorithm is used to check bank card numbers for simple errors such as 

mistyping a digit, and proceeds as follows:
(1) consider each digit as a separate number;
(2) moving left, double every other number from the second last;（从右向左，偶数位
的数字乘2）

(3) subtract 9 from each number that is now greater than 9; add all the resulting 
numbers together;

(4) if the total is divisible by 10, the card number is valid.

Define a function luhn :: Int -> Int -> Int -> Int -> Bool that decides if a four-digit bank 
card number is valid. For example:

> luhn  1  7  8  4
True

> luhn  4  7  8  3
False”



第4章：函数的定义 
Function Definition

就到这⾥吧


